2019 年中学生化学金秋营试题 II

2019年10月19日14:00-17:00北京

第1题 (18分) 2-甲基丙烷与氯自由基的反应是放热的、与溴自由基的反应是吸热的。

- 1-1 分别画出 2-甲基丙烷与氯气和溴反应的势能图,并给出中间体与过渡态的结构简式。
- 1-2 请根据势能图解释为什么溴与 2-甲基丙烷反应的选择性较高。

第2题 (13 分) 柠檬烯的结构简式如下图所示,请分别画出(R)-柠檬烯与(S)-柠檬烯的结构简式,并画出其在催化氢化条件下的反应产物,并判断你所画的产物有没有光活性?

第3题 (9分) 五碳糖在酸性条件下脱水可以定量得到化合物 A,其在 IR 中 1760 cm⁻¹处有一强烈吸收峰,其 1 H NMR 谱如下: δ (ppm): 9.63 (1H, s); 7.49 (1H, d); 7.03 (1H, d); 6.42 (1H, t)。

$$\mathbf{A} \xrightarrow{\mathrm{NH}_3} \mathbf{B} \xrightarrow{\mathrm{MeI (excess)}} \mathbf{C}$$

根据如上提示信息,写出 A, B, C 的结构简式。

第4题 (10分) 推测以下反应合适的反应中间体。

$$\begin{array}{c} O'Bu \\ Me \\ O \\ \hline O \\ OAc \\ O$$

第5题 (12分) 推测以下反应合适的反应中间体。

第6题 (12分) 20世纪 90年代英国人发现了如下反应,试为第二和第三步的反应写一个合理的反应历程,不必画出电子流向。

第7题 $(16 \, f)$ 科学家在 $(16 \, f)$ 和学家在 $(16 \, f$

- 7-1 写出实际上发生反应的反应历程。
- 7-2 尝试分析为何科学家最初弄错了中间产物。

第 8 题 $(10 \, \text{分})$ 在生物合成中常用一种缓冲剂(Tris-HCl),现欲配置 $100 \, \text{ml} \, 20 \, \text{mM} \, \text{pH} = 8.00$ 的缓冲溶液,请问需要多少克 Tris 碱 $(M_r = 121 \, \text{g mol}^{-1}, \, \text{pK}_b = 5.92)$,多少 mL $0.10 \, \text{M} \, \text{HCl}$ 溶液?

第 9 题 (8 分) 难溶硫化物盐 **M**S 的饱和水溶液,由于硫离子水解为 H_2S 与 HS^- ,对溶液中 OH^- 的影响不可忽略。如果溶液 pH=8.0,试计算 **M**S 的 K_{sp} 。已知 H_2S 的 $K_{a1}=1.02\times10^{-7}$, $K_{a2}=1.10\times10^{-15}$ 。

第 10 题(12 分)在 pH = 5.50 时用络合滴定法测定 Zn^{2+} 与 Al^{3+} 混合溶液中 Zn^{2+} 的浓度,先向溶液中加入适量 氟离子来掩蔽 Al^{3+} ,滴定终点时[F^-] = 0.010 M,已知 $log \beta_1 \sim \beta_6 = 6.1$,11.7,15.0,17.7,19.4,19.7, $pK_a(HF) = 3.1$, $log \alpha Y(H) = 5.7$,pK(ZnY) = 16.5,pK(AlY) = 16.1, $pZn_{ep} = 5.7$,在滴定开始的时[Y] = $[Zn^{2+}] = [Al^{3+}] = 0.020$ M,计算终点时 Al^{3+} 以及 AlY 的实际浓度,Y 的分析浓度,Y 的实际浓度。